Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 4 de 4
Фильтр
1.
Int J Mol Sci ; 23(8)2022 Apr 11.
Статья в английский | MEDLINE | ID: covidwho-2225297

Реферат

Sphingolipids, which act as a bioactive signaling molecules, are involved in several cellular processes such as cell survival, proliferation, migration and apoptosis. An imbalance in the levels of sphingolipids can be lethal to cells. Abnormalities in the levels of sphingolipids are associated with several human diseases including kidney diseases. Several studies demonstrate that sphingolipids play an important role in maintaining proper renal function. Sphingolipids can alter the glomerular filtration barrier by affecting the functioning of podocytes, which are key cellular components of the glomerular filtration barrier. This review summarizes the studies in our understanding of the regulation of sphingolipid signaling in kidney diseases, especially in glomerular and tubulointerstitial diseases, and the potential to target sphingolipid pathways in developing therapeutics for the treatment of renal diseases.


Тема - темы
Kidney Diseases , Podocytes , Apoptosis , Female , Humans , Kidney Diseases/metabolism , Male , Podocytes/metabolism , Signal Transduction , Sphingolipids/metabolism
2.
J Am Soc Nephrol ; 33(4): 786-808, 2022 04.
Статья в английский | MEDLINE | ID: covidwho-2141050

Реферат

BACKGROUND: The cell-matrix adhesion between podocytes and the glomerular basement membrane is essential for the integrity of the kidney's filtration barrier. Despite increasing knowledge about the complexity of integrin adhesion complexes, an understanding of the regulation of these protein complexes in glomerular disease remains elusive. METHODS: We mapped the in vivo composition of the podocyte integrin adhesome. In addition, we analyzed conditional knockout mice targeting a gene (Parva) that encodes an actin-binding protein (α-parvin), and murine disease models. To evaluate podocytes in vivo, we used super-resolution microscopy, electron microscopy, multiplex immunofluorescence microscopy, and RNA sequencing. We performed functional analysis of CRISPR/Cas9-generated PARVA single knockout podocytes and PARVA and PARVB double knockout podocytes in three- and two-dimensional cultures using specific extracellular matrix ligands and micropatterns. RESULTS: We found that PARVA is essential to prevent podocyte foot process effacement, detachment from the glomerular basement membrane, and the development of FSGS. Through the use of in vitro and in vivo models, we identified an inherent PARVB-dependent compensatory module at podocyte integrin adhesion complexes, sustaining efficient mechanical linkage at the filtration barrier. Sequential genetic deletion of PARVA and PARVB induces a switch in structure and composition of integrin adhesion complexes. This redistribution of these complexes translates into a loss of the ventral actin cytoskeleton, decreased adhesion capacity, impaired mechanical resistance, and dysfunctional extracellular matrix assembly. CONCLUSIONS: The findings reveal adaptive mechanisms of podocyte integrin adhesion complexes, providing a conceptual framework for therapeutic strategies to prevent podocyte detachment in glomerular disease.


Тема - темы
Glomerular Filtration Barrier , Microfilament Proteins , Podocytes , Animals , Glomerular Filtration Barrier/metabolism , Integrins/metabolism , Mice , Mice, Knockout , Microfilament Proteins/metabolism , Podocytes/metabolism
3.
J Am Soc Nephrol ; 32(2): 357-374, 2021 02.
Статья в английский | MEDLINE | ID: covidwho-1496662

Реферат

BACKGROUND: Injury to kidney podocytes often results in chronic glomerular disease and consecutive nephron malfunction. For most glomerular diseases, targeted therapies are lacking. Thus, it is important to identify novel signaling pathways contributing to glomerular disease. Neurotrophic tyrosine kinase receptor 3 (TrkC) is expressed in podocytes and the protein transmits signals to the podocyte actin cytoskeleton. METHODS: Nephron-specific TrkC knockout (TrkC-KO) and nephron-specific TrkC-overexpressing (TrkC-OE) mice were generated to dissect the role of TrkC in nephron development and maintenance. RESULTS: Both TrkC-KO and TrkC-OE mice exhibited enlarged glomeruli, mesangial proliferation, basement membrane thickening, albuminuria, podocyte loss, and aspects of FSGS during aging. Igf1 receptor (Igf1R)-associated gene expression was dysregulated in TrkC-KO mouse glomeruli. Phosphoproteins associated with insulin, erb-b2 receptor tyrosine kinase (Erbb), and Toll-like receptor signaling were enriched in lysates of podocytes treated with the TrkC ligand neurotrophin-3 (Nt-3). Activation of TrkC by Nt-3 resulted in phosphorylation of the Igf1R on activating tyrosine residues in podocytes. Igf1R phosphorylation was increased in TrkC-OE mouse kidneys while it was decreased in TrkC-KO kidneys. Furthermore, TrkC expression was elevated in glomerular tissue of patients with diabetic kidney disease compared with control glomerular tissue. CONCLUSIONS: Our results show that TrkC is essential for maintaining glomerular integrity. Furthermore, TrkC modulates Igf-related signaling in podocytes.


Тема - темы
Kidney Diseases/metabolism , Nephrons/metabolism , Receptor, IGF Type 1/metabolism , Receptor, trkC/metabolism , Animals , Case-Control Studies , Disease Models, Animal , Humans , Kidney Diseases/etiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Phosphoproteins/metabolism , Podocytes/metabolism , Signal Transduction/physiology
4.
Biochim Biophys Acta Mol Basis Dis ; 1867(10): 166186, 2021 10 01.
Статья в английский | MEDLINE | ID: covidwho-1446450

Реферат

The soluble urokinase plasminogen activator receptor (suPAR) has been implicated in the pathogenesis of kidney diseases including primary and recurrent focal and segmental glomerulosclerosis (FSGS), diabetic nephropathy, and acute kidney injuries (AKI). Elevated serum suPAR concentration is a negative prognostic indicator in multiple critical clinical conditions. This study has examined the initial transduction steps used by suPAR in cultured mouse podocytes. We now report that the receptor for advanced glycation end-products (RAGE) co-immunoprecipitates with αV and ß3 integrin subunits, which have been previously shown to initiate suPAR signal transduction at the podocyte cell surface. siRNA knock-down of RAGE attenuated Src phosphorylation evoked by either suPAR or by glycated albumin (AGE-BSA), a prototypical RAGE agonist. suPAR effects on Src phosphorylation were also blocked by the structurally dissimilar RAGE antagonists FPS-ZM1 and azeliragon, as well as by cilengitide, an inhibitor of outside-in signaling through αV-integrins. FPS-ZM1 also blocked Src phosphorylation evoked by AGE-BSA. FPS-ZM1 blocked increases in cell surface TRPC6 abundance, cytosolic reactive oxygen species (ROS) and activation of the small GTPase Rac1 evoked by either suPAR or AGE-BSA. In addition, FPS-ZM1 inhibited Src phosphorylation evoked by serum collected from a patient with recurrent FSGS during a relapse. The magnitude of this inhibition was indistinguishable from the effect produced by a neutralizing antibody against suPAR. These data suggest that orally bioavailable small molecule RAGE antagonists could represent a useful therapeutic strategy for a wide range of clinical conditions associated with elevated serum suPAR, including primary FSGS and AKI.


Тема - темы
Integrin alphaVbeta3/metabolism , Podocytes/metabolism , Receptor for Advanced Glycation End Products/metabolism , Receptors, Urokinase Plasminogen Activator/metabolism , Signal Transduction/physiology , Animals , Cell Line , Humans , Kidney Diseases/metabolism , Mice , Reactive Oxygen Species/metabolism
Критерии поиска